Optimizing the Performance of Microsoft CRM 1.2
White Paper

Published: October 2004
Microsoft Corporation

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the date of publication.

This White Paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no part of this document may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

 2004 Microsoft Corporation. All rights reserved.

Microsoft, Active Directory, Outlook, Visual Studio, Windows, Windows Server, are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

The names of actual companies and products mentioned herein may be the trademarks of their respective owners.

Contents

iContents

Summary
1
Reindex the Database Using DBCC DBREINDEX Script
1
Advantages to Running DBCC DBREINDEX
2
When to Use DBCC INDEXDEFRAG and SHOWCONTIG
4
Enabling the SQL Server Text in Row Option
4
Database Maintenance
5
Updating Statistics
5
Disabling Data Replication
6
Remove Remaining Replication System Objects
7
Enabling Data Replication
13
Reduce the Size of the Database Table
14
Remove Records Deleted from Microsoft CRM
15
Creating and Managing Indexes
26
Performance Enhancement and Security Updates
28
Cumulative Security Update for SQL Server 2000
28
Applying the Performance Enhancement Update
28
Improving Synchronization Performance
28
Fixing the Error That Occurred When Copying a Role in Microsoft CRM 1.2
29
Configuring Microsoft CRM
29
Manipulating File Groups
30
Locate Logs and the Databases on Separate Devices from the Data
30
Moving the MSDB Database
30
Moving the Master Database
32
Moving the Model Database
32
Moving the tempdb Database
33
Use the Appropriate RAID Configuration
34
Improving Report Performance
35
Preparing to Add Parameters to Your Reports
35
Creating a Parameter-Driven Report
36
Adding the Owner Parameter to the Record Selection Formula
38
Performance Monitoring of the Microsoft CRM System
39
Performance Monitoring for Windows 2000 and Windows Server 2003
40
Create a Baseline
40
Performance Monitoring of the IIS Server
43
Performance Monitoring of Exchange 2000 and Exchange 2003
44
Performance Monitoring of SQL Server 2000
45
.NET Framework Tuning
46
Tuning CLR
46
Identifying Common Bottlenecks
47

Summary

This white paper discusses some of the ways that you can optimize the performance of your Microsoft Business Solutions CRM 1.2 system. The paper begins with several optimizations that have the potential to increase performance the most and are also relatively easy to perform. The optimizations later in this paper can also improve performance, but are more complex, and require more advanced knowledge to complete.
This paper also provides links to Microsoft Knowledge Base articles and related Microsoft CRM documentation.

To enhance performance of Microsoft CRM the most, try these optimizations in the following order:

1. Reindex the Microsoft CRM database using the DBREINDEX script.
2. Enable the Microsoft SQL Server™ Text in Row option.
3. Maintain the database regularly.
4. The following optimizations are also useful, but they might not provide as much benefit to Microsoft CRM performance, or might require more advanced knowledge to implement:
5. Apply performance enhancement updates.

6. Configure Microsoft CRM.
· Manipulate file groups.
· Improve report performance.
· Monitor performance of Microsoft CRM system.
Important These optimizations are based on a standard Microsoft CRM 1.2 configuration. Due to the many types of customized configurations available to Microsoft CRM 1.2 customers, the optimizations may or may not work with all configurations.
Warning Before performing any of the following optimization procedures, back up your databases and Active Directory. If you do not back up these items, you risk losing the information contained in them.
Reindex the Database Using DBCC DBREINDEX Script

DBCC DBREINDEX is a very helpful database maintenance command available for defragmenting indexes in SQL Server. However, DBCC DBREINDEX locks the tables it is operating on. As a result, the Microsoft CRM system should be unavailable to users when this command runs. DBCC DBREINDEX can be used to rebuild one or more indexes for a specific table. When using DBCC DBREINDEX, you do not have to know anything about the underlying table structure or any PRIMARY KEY or UNIQUE constraints; these are preserved automatically during the rebuild. DBCC DBREINDEX completely rebuilds the indexes, so it restores the page density levels to the original fill factor (default); or you can choose another target value for the page density. Internally, running DBCC DBREINDEX is similar to using Transact-SQL statements to drop and re-create the indexes manually.
Note If you need to create new or manage existing indexes, see the section Creating and Managing Indexes
Important Creating and managing indexes can be complex tasks. Do not attempt unless you have experience in this area.
Advantages to Running DBCC DBREINDEX

For large or small datasets, there are two distinct advantages of running DBCC DBREINDEX:

• Rebuild statistics automatically during the rebuild of the indexes; this can have dramatic improvements on workload performance.

• Take advantage of multiple-processor computers and can be significantly faster when you rebuild large or heavily fragmented indexes.

All work done by DBCC DBREINDEX occurs as a single, automatic transaction. The new indexes must be completely built and in place before the old index pages are released. Performing the rebuild requires adequate free space in the data file or files. Without enough free space in the data files, DBCC DBREINDEX may be unable to rebuild the indexes, or the indexes may be rebuilt with logical fragmentation values above zero. The amount of free space needed varies and depends on the number of indexes being created in the transaction. For clustered indexes, a good guideline is:
Required free space = 1.2 * (average rowsize) * (number of rows)

For nonclustered indexes, you can predict free space necessary by calculating the average size of each row in the nonclustered index--length of the nonclustered key plus the length of clustering key or row ID. Then multiply that value by the number of rows. If you rebuild indexes for an entire table, you will need enough free space to build the clustered index and all nonclustered indexes. Similarly, if you rebuild a nonunique clustered index, you will also need free space for both the clustered and nonclustered indexes. The nonclustered indexes are implicitly rebuilt because SQL Server must generate new unique identifiers for the rows. When you use DBCC DBREINDEX, it is good practice to specify the index you want to defragment. This gives you more control over the operations being performed and can help to avoid unnecessary work.

Use the DBCC DBREINDEX script to reindex all the indexes in a particular database using a fill factor of 90, as shown in the following procedure.
Note Perform this procedure after normal business hours because the table or tables will be locked during the course of reindexing.
Reindex all the indexes in a database

1. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Query Analyzer.

2. In the Connect to SQL Server dialog box, click OK.

3. On the Query menu, click Change Database.

4. In the Select Database of <ServerName> dialog box, click the Microsoft CRM database that you want to work on, and then click OK.

5. In the Query window, type the following commands:

--Declare the variable.

DECLARE @TableName varchar(255)

--Declare the cursor.

DECLARE TableCursor CURSOR FOR
SELECT TABLE_NAME FROM INFORMATION_SCHEMA.TABLES
WHERE TABLE_TYPE = 'base table'
--Open the cursor and run DBREINDEX script.

OPEN TableCursor

FETCH NEXT FROM TableCursor INTO @TableName

WHILE @@FETCH_STATUS = 0

BEGIN

PRINT 'Reindexing ' + @TableName

DBCC DBREINDEX(@TableName,' ',90)

FETCH NEXT FROM TableCursor INTO @TableName

END

--Close and deallocate the cursor.

CLOSE TableCursor

DEALLOCATE TableCursor
6. Click the Execute Query button on the toolbar, and the results show in the results pane.

You need to update the statistics after all the indexes in a database have been defragmented or reindexed, or both. How to update statistics is discussed later in this paper in the section Updating Statistics.
When to Use DBCC INDEXDEFRAG and SHOWCONTIG
For large datasets of 5000 entities or more, you might also need to run DBCC INDEXDEFRAG to repair fragmentation of the database. DBCC INDEXDEFRAG can defragment clustered and nonclustered indexes on tables and views. DBCC INDEXDEFRAG defragments the leaf level of an index so that the physical order of the pages matches the left-to-right logical order of the leaf nodes, thus improving index-scanning performance.
The DBCC SHOWCONTIG script identifies the extent of the fragmentation, and then DBCC INDEXDEFRAG defragments the database. Example E in DBCC SHOnWCONTIG illustrates how to use DBCC SHOWCONTIG and DBCC INDEXDEFRAG to defragment the indexes in a database. For more information about DBCC INDEXDEFRAG, see DBCC INDEXDEFRAG.
Enabling the SQL Server Text in Row Option

By default, SQL Server stores data strings outside of a table in separate pages. A pointer to the separate pages is stored in the data row. Storing all the data strings in separate pages can cause Microsoft CRM performance to deteriorate. The Text in Row option enables SQL Server to place the security descriptor information and other small to medium text fields in the same table as the records. You can specify the size of data strings between 24 and 7000 characters. If you do not specify a size, the size defaults to 256 bytes.

Note If you have data strings that contain more than 7000 characters, they will always be stored in separate pages with pointers in the data row.
Enable Text in Row for Lead entities with up to 2000 characters

7. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click SQL Server Query Analyzer.

8. In the Connect to SQL Server dialog box, click OK.

9. In the Select Database of <ServerName> dialog box, click the Microsoft CRM database that you want to work on, and then click OK.

10. In the Query window, type the following script:
Exec sp_tableoption 'leadbase','text in row', 2000
11. Click the Execute Query button on the toolbar.

“The command(s) completed successfully.” appears in the results pane of the Query window.

For more information about text in row data, see Text in Row Data.
Database Maintenance

To ensure optimal performance of the Microsoft CRM database on SQL Server, you should have SQL Server maintenance plans running regularly, for example, every night, or every week. These plans should include the following best practice recommendations for file groups: updating statistics, disabling and enabling data replication, reducing the size of the database table, removing records deleted from Microsoft CRM, and creating and managing indexes.

Updating Statistics

Updating statistics on the various tables in the Microsoft CRM database enables the SQL Server Query Analyzer to choose an optimal query execution plan.

Use the UPDATE STATISTICS command to update statistics

12. Open SQL Server Query Analyzer.

13. In the Connect to SQL Server dialog box, click OK.

14. In the Select Database of <ServerName> dialog box, click the Microsoft CRM database that you want to update, and then click OK.

15. In the Query window, type the following UPDATE STATISTICS commands:

Update Statistics QueueItemBase With FullScan

Update Statistics LeadBase With FullScan

Update Statistics ActivityBase with FullScan
16. Click the Execute Query button on the toolbar. “The command(s) completed successfully.” appears in the results pane of the Query window.
Alternatively, you can also run the following script in SQL Server Query Analyzer to update the statistics and reindex every table in the database:
declare @TableName varchar(255)

declare @dbname varchar(255)

select @dbname = db_name(0)

declare @sql char (2000)

declare c cursor for

 SELECT name FROM sysobjects

 WHERE

 (xtype = 'U') AND (name NOT LIKE 'conflict%')

 ORDER BY name

 open c

 while 1=1

 begin

 fetch next from c into @TableName

 if (@@fetch_status <> 0)

 begin

 break

 end

 select @sql = 'update statistics ' + @TableName + ' with fullscan'

 print @sql

 exec (@sql)

 end

 close c

 deallocate c

 go

Disabling Data Replication
Microsoft CRM uses SQL Server data replication only if you use the Microsoft CRM Sales for Outlook (the Outlook client) Go Offline feature. If you do not need to go offline, you can disable data replication and avoid the overhead of maintaining replication metadata.

Warning Before performing any of the following optimization procedures, back up your databases and Active Directory. If you do not back up these items, you risk losing the information contained in them.
Disable replication on the instance of SQL Server

17. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.
18. Right-click the Replication folder and then click Disable Publishing.

19. Click Next.

20. Click Yes, disable publishing on SQL Server, and then click Next.

21. On the page that displays the list of existing publications, click Next.

22. Click Finish.

Remove Remaining Replication System Objects

After you disable publishing, run the following script to clean up any remaining replication system objects.
Important Execute this script against the <OrgName>_MSCRM database only.
SET NOCOUNT ON

CREATE TABLE ASReplicationObjects

(

 name sysname,

 type char(2),

 crdate datetime

)

DECLARE @objectName sysname

DECLARE @objectType sysname

DECLARE @sqlStatement nvarchar(1024)

DECLARE @sqlStatementBegin sysname

DECLARE @sqlStatementAndType sysname

DECLARE @sqlStatementDropTrigger sysname

DECLARE @sqlStatementDropProcedure sysname

DECLARE @sqlStatementDropView sysname

DECLARE @sqlStatementDropTable sysname

SET @sqlStatementBegin = N'IF EXISTS (SELECT name FROM sysobjects WHERE
 name = N'''

SET @sqlStatementAndType = N''' AND type=N'''

SET @sqlStatementDropTrigger = N''') DROP TRIGGER '

SET @sqlStatementDropProcedure = N''') DROP PROCEDURE '

SET @sqlStatementDropView = N''') DROP VIEW '

SET @sqlStatementDropTable = N''') DROP TABLE '

--Delete triggers.

SET @objectType = N'TR'

insert into ASReplicationObjects

select name, type, crdate from sysobjects where (type=@objectType) and

 (name like N'del_%' or name like N'ins_%' or name like N'upd_%')

 order by name

select count(*) from ASReplicationObjects as CountTriggers

DECLARE trigger_cursor CURSOR FOR

SELECT name FROM ASReplicationObjects WHERE type = @objectType

OPEN trigger_cursor

FETCH NEXT FROM trigger_cursor INTO @objectName

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @sqlStatement = @sqlStatementBegin + @objectName +
 @sqlStatementAndType +@objectType + @sqlStatementDropTrigger +
 @objectName

 PRINT @sqlStatement

 EXEC sp_executesql @stmt = @sqlStatement

 FETCH NEXT FROM trigger_cursor INTO @objectName

END

CLOSE trigger_cursor

DEALLOCATE trigger_cursor

DELETE ASReplicationObjects

--Delete stored procedures.

SET @objectType = N'P'

insert into ASReplicationObjects

select name, type, crdate from sysobjects where (type =@objectType) and

 (name like N'sp_cft_%' or name like N'sp_ins_%' or
 name like N'sp_sel_%' or name like N'sp_upd_%' or name like N'sel_%')

 order by name

select count(*) from ASReplicationObjects as CountStoredProcedures_cft_ins_sel_upd

DECLARE storproc_cursor CURSOR FOR

SELECT name FROM ASReplicationObjects WHERE type = @objectType

OPEN storproc_cursor

FETCH NEXT FROM storproc_cursor INTO @objectName

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @sqlStatement = @sqlStatementBegin + @objectName +
 @sqlStatementAndType +@objectType + @sqlStatementDropProcedure +
 @objectName
 PRINT @sqlStatement

 EXEC sp_executesql @stmt = @sqlStatement

 FETCH NEXT FROM storproc_cursor INTO @objectName

END

CLOSE storproc_cursor

DEALLOCATE storproc_cursor

DELETE ASReplicationObjects

--Delete stored procedures, for example, %xp and _% . 53 sp, for each –

--Replication setup.
SET @objectType = N'P'

insert into ASReplicationObjects

select name, type, crdate from sysobjects where (type =@objectType) and

 (name like N'%xpand_%' or name like N'%p_cft_%')

 order by name

select count(*) from ASReplicationObjects as CountStoredProceduresLikeExpand

DECLARE storproc_cursor2 CURSOR FOR

SELECT name FROM ASReplicationObjects WHERE type = @objectType

OPEN storproc_cursor2

FETCH NEXT FROM storproc_cursor2 INTO @objectName

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @sqlStatement = @sqlStatementBegin + @objectName +
 @sqlStatementAndType +@objectType + @sqlStatementDropProcedure +
 @objectName

 PRINT @sqlStatement

 EXEC sp_executesql @stmt = @sqlStatement

 FETCH NEXT FROM storproc_cursor2 INTO @objectName

END

CLOSE storproc_cursor2

DEALLOCATE storproc_cursor2

DELETE ASReplicationObjects

--Delete views.

SET @objectType = N'V'

insert into ASReplicationObjects
-- In case views should be removed from metabase.

select name, type, crdate from sysobjects where (type='V') and

 (name like N'ctsv_%' or name like N'tsvw_%' or name like N'CRMPub%'

 or name like N'CRMMetaPub%')

 order by name

select count(*) from ASReplicationObjects as CountViews

DECLARE view_cursor CURSOR FOR

SELECT name FROM ASReplicationObjects WHERE type = @objectType

OPEN view_cursor

FETCH NEXT FROM view_cursor INTO @objectName

WHILE @@FETCH_STATUS = 0

BEGIN

 SET @sqlStatement = @sqlStatementBegin + @objectName +
 @sqlStatementAndType +@objectType + @sqlStatementDropView +
 N'['+@objectName +N']'

 PRINT @sqlStatement

 EXEC sp_executesql @stmt = @sqlStatement

 FETCH NEXT FROM view_cursor INTO @objectName

END

CLOSE view_cursor

DEALLOCATE view_cursor

DELETE ASReplicationObjects

--Delete tables.

SET @objectType = N'U'

insert into ASReplicationObjects

select name, type, crdate from sysobjects where (type='U') and

 (name like N'%onflict_%')

 order by name

select count(*) from ASReplicationObjects as CountTables

DECLARE table_cursor CURSOR FOR

SELECT name FROM ASReplicationObjects WHERE type = @objectType

OPEN table_cursor

FETCH NEXT FROM table_cursor INTO @objectName

WHILE @@FETCH_STATUS = 0

BEGIN

 -- "-" in table name has a syntax problem, so add [] around table name.

 SET @sqlStatement = @sqlStatementBegin + @objectName +
 @sqlStatementAndType +@objectType + @sqlStatementDropTable +
 N'['+@objectName + N']'
 PRINT @sqlStatement

 EXEC sp_executesql @stmt = @sqlStatement

 FETCH NEXT FROM table_cursor INTO @objectName

END

CLOSE table_cursor

DEALLOCATE table_cursor

DELETE ASReplicationObjects

DROP TABLE ASReplicationObjects

Enabling Data Replication
If you decided you do want to use the Outlook client Go Offline feature, you can enable data replication. Enabling data replication requires re-creating SQL replication using Server Manager in Microsoft CRM Deployment Manager.
Note If you copy and paste the SQL script, you will need to remove and add the apostrophe characters again because the HTML formatted apostrophes are not properly recognized in Microsoft SQL Server Query Analyzer.

Enable replication and create publications

23. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click SQL Server Query Analyzer.

24. In the Connect to SQL Server dialog box, select your Microsoft SQL Server from the drop-down list, and then click OK.

Note You must log on as a SQL Server Administrator.

25. On the SQL Server Query Analyzer toolbar, from the Database drop-down list, select your company’s Microsoft CRM database. Some examples of databases are Adventure_Works_Cycle_MSCRM and MyOrganization_MSCRM.

26. Type the following command in the Query window, and then click Execute from the Query menu:

EXEC p_CRMReplicationSetup 'SQL Server name', 'SQL Server name', 'Microsoft CRM database name', 'Metabase database name', 'replication SQL Server directory', 'SQL login group name', 'MSCRMDistribution database name'

Command descriptions:
Microsoft CRM database name is the database that has a name in the format OrganizationName_MSCRM.

Metabase database name is the database that has a name in the format OrganizationName_METABASE.

Replication SQL Server directory is the path of the REPLDATA directory on the computer running SQL Server. For example, C:\Program Files\Microsoft SQL Server\MSSQL\REPLDATA.

SQL login group name is the name in the Logins node under Security. It is in the format ‘DomainName\SQLRepl {E5334FB9-440A-4BD8-A19A-0FA54E6B248C}’. Refer to the procedure at the end of this section for the information about how to find this name.
MSCRMDistribution database name is the database that has a name in the format OrganizationName_MSCRMDistribution. If you do not see this database in SQL, specify the database name as <OrganizationName>_MSCRMDistribution (where <OrganizationName> is replaced with your Microsoft CRM organization name) to create the database.

For example, for an organization that has the name MyOrganization, which has users in the domain MyDomain, and is installed to a SQL Server computer that is named MySQLSvr, use a command that is similar to the following command:

EXEC p_CRMReplicationSetup 'MySQLSvr', 'MySQLSvr', 'MyOrganization_MSCRM', 'MyOrganization_METABASE', 'C:\Program Files\Microsoft SQL Server\MSSQL\REPLDATA', 'MyDomain\SQLRepl {E5334FB9-440A-4BD8-A19A-0FA54E6B248C}', 'MyOrganization_MSCRMDistribution'
Find the SQL login group
27. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.
28. In the tree, expand the Security node of the server whose group name you want to determine. This is the server that you specified during set up.
29. Click Logins to view a list of login names.
30. In the Details pane, right-click the login name that is in the following format, and then click Properties:
domain name\SQLRepl {E5334FB9-440A-4BD8-A19A-0FA54E6B248C}
31. In the Properties dialog box, click the Database Access tab.
32. The SQL login group name is the name in the User column for one of the populated rows. Use any one of the names that this column lists.
33. Right-click the name, click Copy, and then paste the name from the User column in the ‘SQL login group name’ parameter in the EXEC command line.
Reduce the Size of the Database Table

We recommend that you run the following script to help prevent your <OrgName>_MSCRM database table from growing too large and affecting Microsoft CRM performance. Run this script nightly or weekly to remove invalid subscription entries from the SyncEntry table against the <OrgName>_MSCRM database.

Note This script can also be run manually in Microsoft SQL Query Analyzer against the <OrgName>_MSCRM database.
Note Before running the following script, make sure you run the script in the “Remove Remaining Replication System Objects” section to clean up the Subscription and SyncEntry tables.
-- Substitute name of your organization for the database name.

USE <OrgName>_MSCRM

BEGIN TRAN

delete from SyncEntry where SubscriptionId in (select SubscriptionId from Subscription where machineName Is null)

COMMIT TRAN

-- Substitute name of your organization for the database name.

USE <OrgName>_MSCRM
BEGIN TRAN

delete from Subscription where machineName Is null

COMMIT TRAN

Remove Records Deleted from Microsoft CRM
If you have tables with a large number of records and you have deleted records from Microsoft CRM, the script shown in the previous section does not remove the deleted records from the tables. To remove the deleted records, run the following script.
Important To reduce the impact to performance, we recommend that you run just one or two entities at a time after regular business hours. Also, running a few entities at a time should also reduce SQL locking or blocking.

BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1) AND
 ObjectId not in (select AccountId from AccountBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2) AND
 ObjectId not in (select ContactId from ContactBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (3) AND
 ObjectId not in (select OpportunityId from OpportunityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (4) AND
 ObjectId not in (select LeadId from LeadBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (5) AND
 ObjectId not in (select AnnotationId from AnnotationBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (8) AND
 ObjectId not in (select SystemUserId from SystemUserBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (9) AND
 ObjectId not in (select TeamId from TeamBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (10) AND
 ObjectId not in (select BusinessUnitId from BusinessUnitBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (112) AND
 ObjectId not in (select IncidentId from IncidentBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (121) AND
 ObjectId not in (select ProcessId from WFProcess)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (122) AND
 ObjectId not in (select ProcessInstanceId from WFProcessInstance)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (123) AND
 ObjectId not in (select CompetitorId from CompetitorBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (126) AND
 ObjectId not in (select DocumentIndexId from DocumentIndex)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (127) AND
 ObjectId not in (select KbArticleId from KbArticleBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (129) AND
 ObjectId not in (select SubjectId from SubjectBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (130) AND
 ObjectId not in (select CompetitorContactId from
 CompetitorContactBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (132) AND
 ObjectId not in (select BusinessUnitNewsArticleId from
 BusinessUnitNewsArticleBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (134) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (135) AND
 ObjectId not in (select ActivityPartyId from ActivityPartyBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (136) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (137) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (138) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (139) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (140) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (141) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (142) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (145) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (146) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (147) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (150) AND
 ObjectId not in (select SystemUserId from UserSettingsBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1001) AND
 ObjectId not in (select ActivityMimeAttachmentId from
 ActivityMimeAttachment)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1003) AND
 ObjectId not in (select InternalAddressId from InternalAddressBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1004) AND
 ObjectId not in (select CompetitorAddressId from
 CompetitorAddressBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1005) AND
 ObjectId not in (select CompetitorContactAddressId from
 CompetitorContactAddressBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1006) AND
 ObjectId not in (select ProductId from CompetitorProduct)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1006) AND
 ObjectId not in (select CompetitorId from CompetitorProduct)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1007) AND
 ObjectId not in (select RevenueReportId from CompetitorRevenueReportBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1010) AND
 ObjectId not in (select ContractId from ContractBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1011) AND
 ObjectId not in (select ContractDetailId from ContractDetailBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1013) AND
 ObjectId not in (select DiscountId from DiscountBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1016) AND
 ObjectId not in (select KbArticleTemplateId from KbArticleTemplateBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1017) AND
 ObjectId not in (select LeadAddressId from LeadAddressBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1019) AND
 ObjectId not in (select OrganizationId from OrganizationBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1021) AND
 ObjectId not in (select FormId from OrganizationUIBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1022) AND
 ObjectId not in (select PriceLevelId from PriceLevelBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1023) AND
 ObjectId not in (select PrivilegeId from PrivilegeBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1024) AND
 ObjectId not in (select ProductId from ProductBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1025) AND
 ObjectId not in (select ProductId from ProductAssociation)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1025) AND
 ObjectId not in (select AssociatedProduct from ProductAssociation)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1026) AND
 ObjectId not in (select ProductPriceLevelId from
 ProductPriceLevelBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1028) AND
 ObjectId not in (select ProductId from ProductSubstitute)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1028) AND
 ObjectId not in (select SubstitutedProductId from ProductSubstitute)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1036) AND
 ObjectId not in (select RoleId from RoleBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1037) AND
 ObjectId not in (select RoleTemplateId from RoleTemplateBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1038) AND
 ObjectId not in (select SalesLiteratureId from SalesLiteratureBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1039) AND
 ObjectId not in (select SavedQueryId from SavedQueryBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1051) AND
 ObjectId not in (select LeadId from SystemUserLeadAssignment)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1051) AND
 ObjectId not in (select SystemUserId from SystemUserLeadAssignment)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1053) AND
 ObjectId not in (select LeadId from TeamLeadAssignment)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1053) AND
 ObjectId not in (select TeamId from TeamLeadAssignment)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1055) AND
 ObjectId not in (select UoMId from UoMBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1056) AND
 ObjectId not in (select UoMScheduleId from UoMScheduleBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1061) AND
 ObjectId not in (select ActionId from WFAction)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1062) AND
 ObjectId not in (select WFActionLogId from WFActionLog)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1064) AND
 ObjectId not in (select ConditionId from WFCondition)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1065) AND
 ObjectId not in (select EventLogId from WFEventLog)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1066) AND
 ObjectId not in (select ParameterId from WFParameter)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1067) AND
 ObjectId not in (select RuleId from WFRule)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1068) AND
 ObjectId not in (select WFRuleLogId from WFRuleLog)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1069) AND
 ObjectId not in (select StepId from WFStep)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1070) AND
 ObjectId not in (select SalesLiteratureItemId from
 SalesLiteratureItemBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1071) AND
 ObjectId not in (select CustomerAddressId from CustomerAddressBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1080) AND
 ObjectId not in (select DiscountTypeId from DiscountTypeBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1081) AND
 ObjectId not in (select ActivityId from ActivityBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1082) AND
 ObjectId not in (select KbArticleCommentId from KbArticleCommentBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1083) AND
 ObjectId not in (select OpportunityProductId from
 OpportunityProductBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1084) AND
 ObjectId not in (select QuoteId from QuoteBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1085) AND
 ObjectId not in (select QuoteDetailId from QuoteDetailBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1086) AND
 ObjectId not in (select UserFiscalCalendarId from
 UserFiscalCalendarBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1088) AND
 ObjectId not in (select SalesOrderId from SalesOrderBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1089) AND
 ObjectId not in (select SalesOrderDetailId from
 SalesOrderDetailBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1090) AND
 ObjectId not in (select InvoiceId from InvoiceBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (1091) AND
 ObjectId not in (select InvoiceDetailId from InvoiceDetailBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2000) AND
 ObjectId not in (select UserFiscalCalendarId from
 UserFiscalCalendarBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2001) AND
 ObjectId not in (select UserFiscalCalendarId from

 UserFiscalCalendarBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2002) AND
 ObjectId not in (select UserFiscalCalendarId from
 UserFiscalCalendarBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2003) AND
 ObjectId not in (select UserFiscalCalendarId from
 UserFiscalCalendarBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2004) AND
 ObjectId not in (select UserFiscalCalendarId from
 UserFiscalCalendarBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2010) AND
 ObjectId not in (select TemplateId from TemplateBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2011) AND
 ObjectId not in (select ContractTemplateId from
 ContractTemplateBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2012) AND
 ObjectId not in (select UnresolvedAddressId from
 UnresolvedAddressBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2013) AND
 ObjectId not in (select TerritoryId from TerritoryBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2014) AND
 ObjectId not in (select MailingListId from MailingListBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2020) AND
 ObjectId not in (select QueueId from QueueBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2027) AND
 ObjectId not in (select LicenseId from License)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2028) AND
 ObjectId not in (select TrackedItemHistoryId from
 TrackedItemHistoryBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (2029) AND
 ObjectId not in (select QueueItemId from QueueItemBase)
COMMIT TRAN
BEGIN TRAN
DELETE from SyncEntry WHERE ObjectTypeCode in (3000) AND
 ObjectId not in (select IntegrationEntryId from
 IntegrationStatusBase)
COMMIT TRAN
After you run this script, we recommend that you also defragment the indexes. For more information about determining fragmenting and defragmenting, see Example E in DBCC SHOWCONTIG, and DBCC INDEXDEFRAG.

Creating and Managing Indexes

Important Creating or managing indexes are considered advanced tasks. Make sure you have the correct information and experience before attempting the following tasks.
A common problem that affects Microsoft CRM performance is searching the SQL Server database for information in a specific view without having a corresponding index that adequately satisfies that particular query. For example, if you query for leads ordered by company name, but do not have an index set up that gathers leads by company name, SQL Server will have to search through every record in the Leads table, looking for the company name you requested. When SQL Server uses an index, it goes directly to the records that match the query.

For more information, see Indexes.

If you have a large database, determining what indexes to create can be a complex task. The Index Tuning Wizard enables you to select and create an optimal set of indexes and statistics for a Microsoft SQL Server 2000 database without requiring an expert understanding of the structure of the database, the workload, or the internals of SQL Server.
The Index Tuning Wizard can:

· Recommend the best mix of indexes for a database given a workload, by using the SQL Server Query Analyzer to analyze the queries in the workload.

· Analyze the effects of the proposed changes, including index usage, distribution of queries among tables, and performance of queries in the workload.

· Recommend ways to tune the database for a small set of problem queries.

· Enable you to customize the recommendation by specifying advanced options such as disk space constraints.

A recommendation consists of SQL statements that can be executed to create new, more effective indexes and, if wanted, drop existing indexes that are ineffective. Indexed views are recommended on platforms that support their use. After the Index Tuning Wizard has suggested a recommendation, it can then be:

· Implemented immediately.

· Scheduled to be implemented later by creating a SQL Server job that executes an SQL script.

· Saved to an SQL script, to be executed manually by the user at a later time or on a different server.

To also learn about index views, see the white paper, Improving Performance with SQL Server 2000 Indexed Views.
The Index Tuning Wizard does not recommend indexes on:

· Tables referenced by cross-database queries that do not exist in the currently selected database.

· System tables.

· PRIMARY KEY constraints and unique indexes.

For more information about index tuning, see the article, Index Tuning Wizard.

Warning Before performing any of the following optimization procedures, back up your databases and Active Directory. If you do not back up these items, you risk losing the information contained in them.
Use the Index Tuning Wizard to determine what indexes to create

34. On the Start menu, point to Programs, point to Microsoft SQL Server, and then click Enterprise Manager.
35. Expand SQL Server Group, and then expand your server that contains the Microsoft CRM database in which to create the index.
36. On the Tools menu, click Wizards.
37. Expand Management.
38. Double-click Index Tuning Wizard.
39. Complete the steps in the wizard.
If you want to add indexes without using the Index Tuning Wizard, you can use the SQL Server Enterprise Manager to create the indexes that you need by performing the following procedure. For more information, see Creating an Index in the SQL Server Books online documentation.
Create an index using the Create Index Wizard

40. In SQL Server Enterprise Manager, expand a server group, and then expand the server in which to create the index.
41. On the Tools menu, click Wizards.
42. Expand Database.
43. Double-click Create Index Wizard.
44. Complete the steps in the wizard.
Performance Enhancement and Security Updates
This section will show you how to improve Microsoft CRM 1.2 performance by applying hotfixes, performance enhancement updates, and security updates that are currently available.
Cumulative Security Update for SQL Server 2000
A security update for SQL Server 2000 is available at the Microsoft Download Center (www.microsoft.com/downloads/details.aspx?familyid=9814AE9D-BD44-40C5-ADD3-B8C99618E68D&displaylang=en). For more information about this security update, see the Knowledge Base article, MS03-031: Cumulative Security Patch for SQL Server.

Applying the Performance Enhancement Update

If you have performance problems with Microsoft Business Solutions CRM Sales for Outlook 1.2, you can apply a performance enhancement update that optimizes the synchronization between the client’s Microsoft SQL Server store (MSDE database) and Microsoft Outlook offline store (the .OST file). This update eliminates unnecessary multiple retrieves from the MSDE database. The performance enhancement update is part of a cumulative update contained in the Microsoft Business Solutions CRM Sales for Outlook 1.2 Feature Pack. For more information, see the Knowledge Base article, Microsoft Business Solutions CRM Sales for Outlook 1.2 Enhancements.
Improving Synchronization Performance

You can also fix performance problems that occur when you try to synchronize contacts and activities to the local MSDE database when the Outlook client goes offline.

The speed with which the Outlook client will synchronize can be greatly increased by synchronizing Microsoft Outlook first, before clicking the Go Offline button to synchronize the Outlook client:
45. Synchronize Microsoft Outlook by pressing F9 while in Microsoft Outlook®.

46. Synchronize the Outlook client by clicking the Go Offline button on the Microsoft CRM toolbar.

Note This will increase performance only when you are utilizing Microsoft CRM appointments, tasks, or contacts and have synchronized them to the local Microsoft Outlook folders.
For more information, see the Knowledge Base article, Improve synchronization performance when Microsoft Business Solutions CRM Sales for Outlook 1.2 is taken offline.

Fixing the Error That Occurred When Copying a Role in Microsoft CRM 1.2
In Microsoft CRM 1.2, when you try to copy a role, the copy operation may fail, and you may receive error messages in the Microsoft CRM Server program event log.
Users who are assigned one of these new or copied Microsoft CRM roles may not be able to log onto the Microsoft CRM server, and they may also receive error messages.

This problem may occur if either of the following conditions is true:

· You create or copy a Microsoft CRM role in an environment that has a slow computer running Microsoft SQL Server.

· There are hundreds of thousands or millions of records in the Microsoft CRM databases.

The role-creation and copy operations update every record in Microsoft CRM that contains a security descriptor. The security descriptor contains information about the access privileges that Microsoft CRM users must have based on the Microsoft CRM roles that have been assigned to the users. The Microsoft CRM Web application may not report any errors to the end user. Therefore, users may have these Microsoft CRM roles assigned, but they receive "Access Denied" error messages when they try to access data that their Microsoft CRM roles should permit them to access.

For more information about the error messages and how to obtain the hotfix, see the Knowledge Base article, Copying a role does not work in Microsoft Business Solutions CRM version 1.2.
Configuring Microsoft CRM

With a simple change to the configuration of Microsoft CRM, such as changing the default view, you can improve performance of the application.

If your database contains a large number of records and you select to view all your customer records or invoices, every time you open Microsoft CRM, you might find that Microsoft CRM performance deteriorates significantly. From the Settings page in Microsoft CRM, you can change the default view for all the different types of records. For example, rather than seeing all the active accounts for your company, you can view only your active accounts.

Change the default view for accounts

47. In Microsoft CRM, on the Home page, click the Settings tab.
48. On the Settings page, click System Customization.
49. Under Record Type Management, click Accounts.
50. In the Common Tasks area, click Set Default View.
51. In the Default View Selector dialog box, select My Active Accounts, and then click OK.
52. When the confirmation message appears, click OK.
Manipulating File Groups

File groups on a SQL Server computer consist of named collections of one or more files that form single units of allocation or for the administration of a database. You can improve the performance of Microsoft CRM installed on the same computer as SQL Server by following the simple recommendations described in this section.
Locate Logs and the Databases on Separate Devices from the Data

You can improve performance by locating your database logs and the databases on a physical disk that is separate from the main data device. Because data modifications are written to the log and to the database, and to the tempdb database if temp tables are used, having three different locations on different disk controllers provides significant benefits. This section will show you how to move the MSDB, Master, model, and tempdb databases.
Moving the MSDB Database
Note If you are using this procedure in conjunction with moving the MSDB and model databases, the order of reattachment must be model first and then MSDB. If MSDB is reattached first, it must be detached and not reattached until after model has been attached.

In SQL Server 2000, system databases cannot be detached using the sp_detach_db stored procedure. Executing sp_detach_db 'msdb' will fail with the following message :

“Server: Msg 7940, Level 16, State 1, Line 1
System databases master, model, msdb, and tempdb cannot be detached.”

Move the MSDB database on the computer running SQL Server 2000

53. In SQL Server Enterprise Manager, right-click the server name and click Properties.
54. On the General tab, click Startup Parameters.
55. Add a new parameter as -T3608.
56. Click Add, then click OK twice to close the dialog boxes.
After you add trace flag 3608, follow these steps:

57. Stop, and then restart SQL Server.

58. Make sure that the SQL Server Agent service is not currently running.

59. Run the following script in SQL Server Query Analyzer to detach the MSDB database:

use master

go

sp_detach_db 'msdb'

go

60. Move the Msdbdata.mdf and Msdblog.ldf files from the current location (for example, D:\MSSQL\Data) to the new location (for example, E:\MSSQL\Data).

61. Remove the -T3608 trace flag from the startup parameters box in Enterprise Manager.

62. Stop and then restart SQL Server.

63. Reattach the MSDB database as follows:

use master

go

sp_attach_db 'msdb','E:\Mssql\Data\msdbdata.mdf','E:\Mssql\Data\msdblog.ldf'

go
Note If you try to reattach the MSDB database by starting SQL Server with trace flag -T3608, you receive the following error:

“Server: Msg 615, Level 21, State 1, Line 1
Could not find database table ID 3, name 'model'.”

Moving the Master Database
In order to move the Master database, you need to change the path for the data and log files for the Master database in SQL Server Enterprise Manager by following these steps:
Note You can optionally change the location of the error log here as well.

64. Right-click the server in Enterprise Manager and click Properties.
65. Click the Startup Parameters button, and you will see the following entries:
-dD:\MSSQL\data\master.mdf

-eD:\MSSQL\log\ErrorLog

-lD:\MSSQL\data\mastlog.ldf

-d is the fully qualified path for the master database data file.

-e is the fully qualified path for the error log file.

-l is the fully qualified path for the master database log file.

66. Remove the current entries for the Master.mdf and Mastlog.ldf files, and add new entries specifying the new location:

-dE:\MSSQL\DATA\master.mdf

-lE:\MSSQL\DATA\mastlog.ldf

67. Stop SQL Server.
68. Copy the Master.mdf and Mastlog.ldf files to the new location (for example, E:\MSSql\data).
69. Restart SQL Server.
Moving the Model Database
To move the model database, SQL Server must be started with trace flag 3608 so that it does not recover any database except the Master.

Note You will not be able to access any user databases right now. You must not perform any operations, other than the following steps, while using this trace flag. To add trace flag 3608 as a SQL Server startup parameter, perform the following steps:

70. In SQL Server Enterprise Manager, right-click the server name, and then click Properties.
71. On the General tab, click Startup Parameters.
72. Add a new parameter as -T3608.

After you add trace flag 3608, perform the following steps:

73. Stop, and then restart SQL Server.
74. Run the following script in SQL Query Analyzer to detach the model database as follows:
use master

go

sp_detach_db 'model'

go

75. Move the Model.mdf and Modellog.ldf files from, for example, D:\Mssql\Data to E:\MSSql\data.
76. Run the following script in SQL Query Analyzer to reattach the model database as follows:

use master

go

sp_attach_db
'model','E:\MSSql\data\model.mdf','E:\MSSql\data\modellog.ldf'

go

77. Remove the -T3608 trace flag from the startup parameters box in Enterprise Manager.
78. Stop and restart SQL Server. You can verify the change in file locations using sp_helpfile:

use model

go

sp_helpfile

go

Moving the tempdb Database
You can move tempdb files by using the ALTER DATABASE statement, as shown in the following procedure:

79. Run the following script in SQL Query Analyzer to determine the logical file names for the tempdb database by using sp_helpfile as follows:
use tempdb

go

sp_helpfile

go

80. The logical name for each file is contained in the name column. This example uses the default file names of tempdev and templog.

81. Use the ALTER DATABASE statement, specifying the logical file name as follows:
use master

go

Alter database tempdb modify file (name = tempdev, filename = 'E:\MSSql\data\tempdb.mdf')

go

Alter database tempdb modify file (name = templog, filename = 'E:\MSSql\data\templog.ldf')

go

82. You should receive the following messages confirming the change:

“File 'tempdev' modified in sysaltfiles. Delete old file after restarting SQL Server.”

”File 'templog' modified in sysaltfiles. Delete old file after restarting SQL Server.”

83. Using sp_helpfile in tempdb will not confirm these changes until you restart SQL Server.
84. Stop and restart SQL Server.
For additional information, see the following Knowledge Base articles:

PRB: Troubleshooting orphaned users topic in Books Online is incomplete.

How To: Transfer logins and passwords between instances of SQL Server.

 HYPERLINK "http://support.microsoft.com/default.aspx?scid=kb;en-us;168001"

PRB: User logon and/or permission errors after restoring dump
.
Use the Appropriate RAID Configuration

For a database server, you should choose hardware-level RAID rather than software RAID. Software RAID is usually cheaper but uses CPU cycles. If CPU utilization is a bottleneck for you, SQL Server may not perform optimally.

Two core RAID levels are of value for a database server:

· Striping with parity (RAID 5)

· Striped mirror (RAID 0+1)

When you choose a RAID level, you have to consider your cost, performance, and availability requirements. RAID 5 is less expensive than RAID 0+1, and RAID 5 performs better for read operations than write operations. RAID 0+1 is more expensive and performs better for write-intensive operations and for accessing the tempdb database.

For more information about other deployment considerations and file group manipulation, see Improving SQL Server Performance in the MSDN Library.
Improving Report Performance
The best way to improve report performance is by limiting the amount of data used in each report. You can do this by adding parameters that users must specify when they run the report such as date ranges or owner, or adding additional selection criteria to a report. This section will illustrate how to add an Owner parameter that lets the user select either just records they own, or all records.
Warning Before performing any of the following optimization procedures, back up your databases and Active Directory. If you do not back up these items, you risk losing the information contained in them.
Preparing to Add Parameters to Your Reports
Before you can add parameters, you must add a Microsoft CRM 1.2 update, and know how Crystal Reports works with Microsoft CRM 1.2.

For instructions on adding the update, see the Knowledge Base article, You are prompted for parameters two times when you try to print a parameter-driven report in Microsoft CRM 1.2.
To understand how Crystal Reports works with Microsoft CRM 1.2, you must keep the following points in mind:

· Only reports in the Enterprise/MSCRM1.2 node are available to Microsoft CRM users.

· You cannot create new folders under the MSCRM1.2 node.

· You cannot use Crystal Reports to directly rename a report. To delete a report, you must use Microsoft CRM 1.2 Report Manager.

For additional information about Report Manager, click the following article number to view the article in the Microsoft Knowledge Base:

Adding, Deleting, and Renaming Reports using Microsoft CRM 1.2 Report Manager

· You cannot use Crystal Reports to directly rename a report. Use Microsoft CRM 1.2 Report Manager or Crystal Reports to save a report with a new name. These methods to rename the reports change the name in Microsoft CRM, but do not change the title that appears in the report's Page Header section. To change the title, on the File menu of Crystal Reports 9, click Summary Info, and then edit the title in the Report Title box.

· For help with the creation of parameters, see Crystal Reports 9 online Help.

Creating a Parameter-Driven Report

The simplest way to create a parameter-driven report is to save an existing Microsoft CRM 1.2 report with a new name, and then modify the copy.

85. On the Start menu, point to Programs, and then click Crystal Reports 9.

86. On the Welcome to Crystal Reports page, click Cancel.

87. On the File menu, click Open.

88. Click Enterprise, and then click OK.

89. Type your authentication information for your Crystal APS, and then click OK.

90. Expand MSCRM1.2, click the report that you want to modify, and then click Open.

91. On the File menu, click Save As, find the location where you want to save the file under the MSCRM1.2 node, specify the name, and then click OK.

If this is your first time using Crystal Reports 9 to modify Microsoft CRM reports, you have connection problems, or you cannot save reports, see the Knowledge Base article:

Frequently asked questions about Microsoft CRM 1.2 reports

Add an Owner Parameter

With an Owner parameter, the user can select between records that the user owns and all records. Therefore, the user does not have to select from a drop-down list of all users.

To add a parameter to a Microsoft CRM report, you must follow these steps:

92. Define the parameter. To do so, specify the name of the parameter, the text to prompt the user for, the drop-down list elements, and the default value.

93. Put all the parameter fields on the report. The fields can be visible or hidden.

94. Add code to the record selection formula that compares the data that the user types in the parameter against the data from Microsoft CRM.

95. Save the report and test the parameter that you added.

To distinguish the records that the person who runs the report owns, the report must be able to identify the Microsoft CRM GUID of the person who runs the report. If the writer of the report creates a UserID parameter, Microsoft CRM automatically assigns the Microsoft CRM GUID of the person who runs the report as its value. Unlike other parameters, the user is not prompted to type the value.
Create an Owner parameter that holds the values "Mine" or "All." When the user runs the report and clicks Mine, if the UserId parameter matches the entity.owner box, the records that the user owns are selected. If the user clicks All, all the records are included.

The following example uses a report that is based on the Account entity.

Step 1: Define the UserID parameter to store the Microsoft CRM GUID of the current user.

7. On the Field Explorer pane in Crystal Reports 9, right-click Parameter Fields, and then click New.

8. In the Name box, type UserID, and then click OK.

Step 2: Define the Owner parameter that prompts the user to click Mine or All.

9. On the Field Explorer pane, right-click Parameter Fields, and then click New.

10. In the Name box, type Owner.

11. In the Prompting text box, type the prompt that appears to the user. For example, type:
Specify which records to include
12. Click Set Default Values.

13. Type the values that you want in the drop-down list. This example uses "Mine" and "All." Use the > button to move each value into the Default Values list.

14. For each value, click Define Description, and then type the text that you want to appear in the drop-down list for the Owner parameter.

15. In the Display drop-down list, click Description, and then click OK.

16. In the Create Parameter Field dialog box, clear the Allow editing of default values when there is more than one value check box.

17. To save your new parameter, click OK.

For the Owner parameter to work, you must include it in the report. To do so, drag the parameter from the Field Explorer pane to any location on the report. It is a good idea to add any new parameters to the report's Page Header section. If the parameters are all listed on the Page Header section, a user can quickly determine what data the report includes. If you do not want the value of the Owner parameter to appear on the report, drag it to a hidden area on the report.

Step 3: Use the Owner parameter in the page header.

Because Owner is the first parameter that you are adding to the page header, you must create a text box to hold the existing Report Title box.

18. Right-click the Report Title box on the report, and then click Delete.

19. On the Insert menu, click Text Object, and put the new text object where the Report Title field was.

20. On the Field Explorer pane, expand Special Fields.

21. Drag the Report Title special box to your new text object.

22. Drag the Owner parameter from the Parameter Fields section of the Field Explorer pane to your new text object.

23. Add any separator text or spaces to separate the title from the Owner parameter.

24. To make the font match the other Microsoft CRM reports, right-click the new text object, click Format Text, on the Font tab, click Verdana, click Bold, click Yellow, and then click OK.

When you view a standard report, you will see all of the records associated with that report. To improve the time it takes to create a report, you can add additional selection criteria to the default criteria for a report.

Step 4: Add the Owner parameter to the record selection formula.
The record selection formula defines which records are included in the report. The formula follows the following structure:

(if {?Parameter1} = "Parameter1_Option1" and {table.field} = "value1" then true

 else if {?Parameter1} = "Parameter1_Option2" and {table.field} = "value2" then true)

For more information about record selection formulas, including templates for different parameter types, see "Record selection formulas" in the Crystal Reports 9 online Help.

In the following procedure, a record selection formula is created that verifies the Owner parameter value that the user clicks. If the user clicks Mine, only accounts that the current user owns are included in the report.

If the report that you are modifying is not based on the Account entity, replace account.ownerid with entity.ownerid.

Adding the Owner Parameter to the Record Selection Formula

96. On the Report menu, click Selection Formulas, and then click Record.

97. Maximize the window.

98. If there is nothing listed in the bottom right pane, type the following formula without the "and" in the first line. If code is already there, add all three lines including the "and" to the end of the code list.
and
(if {?Owner} = "Mine" then {account.ownerid} = {?UserID}
else true)
99. When the report is run, the Owner prompt appears with the prompt text that you specified. When the user clicks OK, the report data appears.

100. Click Save, and then click Close.

101. After you create your reports, you must use Report Manager to replace existing reports or add new reports.
Three sample reports that describe how to use the Professional, Developer, or Advanced versions of Crystal Reports 9 to write parameter-driven reports for Microsoft Business Solutions CRM version 1.2 are available for download. To download the sample reports, visit the following Microsoft Download Center Web site at Microsoft Business Solutions CRM v1.2 Reports Update
Performance Monitoring of the Microsoft CRM System

Performance monitoring is the monitoring of existing system or systems to make sure that optimum use is made of the hardware resources and that agreed performance levels can be maintained. Monitoring is an essential part of successful Microsoft CRM operation. Through effective monitoring, you are able to determine whether you are meeting performance goals, and if you are not, which areas are causing problems. Over time, you can use performance monitoring to generate data that can be used in trend analysis. This alerts you to possible performance and availability issues in the future and enables you to solve problems before they arise.
To effectively monitor the performance of Microsoft CRM system, you should examine performance monitor counters on each of the servers that make up the environment. In this section, we will examine some of the most useful counters to measure specifically in a Microsoft CRM environment and give you suggestions as to what figures you should expect. We will also discuss tuning the .NET Framework in conjunction with common language runtime (CLR) tuning and using performance counters to help identify CLR bottlenecks.

In many cases this analysis will provide you with indications of what changes to make to optimize Microsoft CRM. You can use the information here to help determine which, if any, hardware upgrades are necessary along with any operational practices to help improve the performance of Microsoft CRM.

Warning Before performing any of the following optimization procedures, back up your databases and Active Directory. If you do not back up these items, you risk losing the information contained in them.
Performance Monitoring for Windows 2000 and Windows Server 2003
The Windows 2000 and Windows Server 2003 operating systems include System Monitor for analyzing the performance of your system. System monitor consists of Performance Monitor and Network Monitor. Windows 2000 and Windows Server 2003 have a number of useful objects and counters associated with those objects, which you can monitor to determine the overall health of the environment. When you add SQL Server, Exchange 2000 Server, or Exchange Server 2003 to that environment, a large number of additional objects and counters are installed. These can prove very useful in determining the overall health of Microsoft CRM.

Note Remote monitoring is almost always better than self-monitoring, because performance is not tainted by the load caused by monitoring. For more information about remote monitoring, see the Knowledge Base articles, Creating a Log File to Send to Customers for Remote Monitoring, and Log Is Not Started When You Try to Start a Log with Remote Counters in System Monitor.
Create a Baseline

If you use System Monitor to collect large numbers of Performance Counters, along with other tools to collect server-specific information, how can you be sure what numbers to expect? In some cases, there are specific figures to look for. In many more the answer will depend on a number of factors, such as the specifics of the hardware you have in place, the network environment in which it exists, and the functionality of the application.

To help you understand what figures to expect for your environment, you should use System Monitor to generate a baseline. This is done by simply measuring counters in a functional environment that works well. You can measure a baseline in your test environment, but you should be sure that you are effectively simulating the use in your production environment.

As you collect your baseline figures, keep in mind that in normal use, your Microsoft CRM environment will face different stresses at different times of the day. For example, there may be a greater stress on the system at the start of the working day, during database backup, or when reports are being run. It can be very useful to combine logs over 24 hour periods with more intensive logging during stressful periods as you collect your baseline.

Many organizations are also seasonal in nature. Your organization may, for example, have more CRM activity just before Christmas, or at the end of a financial year. You should continue to update baseline figures to ensure that they accurately reflect the usage of Microsoft CRM in your environment.

Heavily used Windows 2000 and Windows Server 2003 servers may have bottlenecks in a number of areas. Simply monitoring the applications running on Windows 2000 and Windows Server 2003 in isolation will not give you information about the condition of the server itself. You should also monitor for bottlenecks in the Disk Subsystem, Memory, Processor, and Network Subsystem. In many cases, there will be multiple instances of disks and processors, so make sure that you monitor all instances (that is, each disk or each processor).

You should measure the counters shown in the following table for all servers in your Microsoft CRM environment.

Note When monitoring disk counters, you need to enable them to start at boot, using the diskperf –y command.
	Object
	Counter
	Comments

	Logical Disk
	% Free Disk Space
	Particularly important on computers running Exchange Server and SQL Server, as databases and transaction logs may fill disk space, resulting in loss of availability.

	Physical Disk
	Disk Reads/sec
	The main reason for variation in this value is variation in the usage of your environment. If you are experiencing performance problems and these figures are still low, this counter may help provide evidence of the problem.

	Physical Disk
	Disk Writes/sec
	The main reason for variation in this value is variation in the usage of your environment. If you are experiencing performance problems and these figures are still low, this counter may help provide evidence of the problem.

	Physical Disk
	Current Disk Queue Length
	For the most part, this should be at or near zero. On computers running SQL Server 2000, this counter can spike at high values but should not stay high for more than 30 seconds. Any longer indicates a potential bottleneck.

	Physical Disk
	Avg secs per read
	Should be analogous to published disk speed.

	Physical Disk
	Avg secs per write
	Should be analogous to published disk speed or 1-2 milliseconds (ms) if you have write-back caching enabled on your RAID controller.

	Memory
	Pages/sec
	Exchange 2000 and Exchange 2003 servers make heavy use of a pagefile. On an Exchange server a large amount of paging is not in itself an indication of a problem.

For computers running SQL Server 2000, any paging is a detriment to performance. Should stay quite low.

For other servers, measure your paging against your baseline.

	Memory
	Page Reads/sec
	Value should generally be below 100. If the value is consistently high, you may need to increase system memory.

	Memory
	Page Writes/sec
	Value should generally be below 100. If the value is consistently high, you may need to increase system memory.

	Paging File
	% Usage
	You may need to increase the size of your pagefile for Exchange Server. Try to keep this counter below 70 percent.

	Process
	Page Faults/sec
	A page fault can be either a cache fault or a hard disk fault. For the true number of hard disk faults, subtract the number of Cache Faults/sec from the Page Faults/sec value.

For the SQLSERVR instance, should be at or near zero. Any higher level of SQL Server paging indicates a bottleneck.

	Processor
	Interrupts/sec
	Will vary depending on usage in your environment.

	Processor
	%Processor Time
	Measure for a specific processor instance. When using the _TOTAL instance, the total percentage can be (100 * number of processors). When 100 percent of the available processor time is in use for an extended period, indicates a need for more processors. Also see the Processor Queue Length counter for this processor.

	Process
	%Process Time
	On Exchange servers and Microsoft CRM servers, measure inetinfo (IIS). On domain controllers, measure lsass (security system including Active Directory), and on SQL Server computers, measure the SQLSERVR instance.

	System
	Processor Queue Length
	This is a cumulative value for all processors. A sustained value of greater than 2 * (number of processors) indicates a processor bottleneck.

	Network Segment
	% Net Utilization
	Will vary depending on usage in your environment.

	Redirector
	Bytes Total/sec
	Will vary depending on usage in your environment.

	Redirector
	Network Errors/sec
	A high figure will generally indicate the Redirector and one or more servers having communication difficulties.

	Server
	Bytes Total/sec
	Will vary depending on usage in your environment.

	Server
	Pool Paged Peak
	Indicates the proper sizes of the page files and physical memory.

	Server Work Queues
	Queue Length
	A sustained queue length of greater than four may indicate processor congestion.

For more information about monitoring Windows 2000 objects, see the Windows 2000 Server Resource Kit. For information about performance parameters and settings for Windows Server 2003, see Performance Tuning Guidelines for Windows Server 2003.
Performance Monitoring of the IIS Server

Microsoft CRM server is basically an Internet Information Services (IIS) server running a Microsoft .NET-based application. To monitor the overall health of the servers, you should collect information about the Windows 2000 and Windows Server 2003 counters mentioned in the previous section. One of the key counters to be measured against a baseline is the %Process Time for the inetinfo (IIS). In general, if the Microsoft CRM server meets the recommended hardware requirements and does not perform any other tasks, you should find no performance issues on this server.
Performance Monitoring of Exchange 2000 and Exchange 2003
As Microsoft CRM uses the Exchange implementation of Simple Mail Transfer Protocol (SMTP), you will need to monitor the SMTP Server object. Specifically, the Microsoft CRM-Exchange E-Mail Router (the Router) is implemented as a transport event sink that fires on the pre-categorization event, so you should monitor counters that refer to the message categorizer. This is in addition to the Windows 2000 and Windows Server 2003 counters shown in the previous table.
The following table shows the most important counters to monitor.

	Object
	Counter
	Comments

	SMTP Server
	Bytes Received/sec
	The rate bytes are received by the SMTP server.

	SMTP Server
	Cat: Address Lookups/sec
	Number of Address Lookups sent to the Active Directory per second.

	SMTP Server
	Cat: Categorization Completed/sec
	The total number of messages submitted to categorizer that has finished categorization.

	SMTP Server
	Cat: LDAP Searches/sec
	LDAP searches successfully dispatched/sec.

	SMTP Server
	Cat: Messages Submitted/sec
	The total number of messages submitted to the categorizer.

	SMTP Server
	Message Bytes Received/sec
	The rate that bytes are received in messages.

	SMTP Server
	Messages Delivered/sec
	The rate messages are delivered to local mailboxes (this refers to Exchange mailboxes).

	SMTP Server
	Messages Received/sec
	The rate inbound messages are received.

	SMTP Server
	DNS Queries/sec
	The rate of DNS lookups on the server.

All the counters mentioned in this table will vary according to how busy the server is. In many cases, this will depend on how heavily the Exchange server is being used for Exchange e-mail purposes. However, monitoring these counters will enable you to see which Exchange servers are less heavily used. You may then choose to use these servers to contain the Router.

On the Exchange server itself, you may want to use the Monitoring and Status tool. This will enable you to monitor items such as the SMTP Queue Growth and issue notifications if they continue to grow for longer than a specified period of time.

Performance Monitoring of SQL Server 2000

Microsoft CRM depends heavily on Microsoft SQL Server 2000. You should ensure that you measure Windows 2000 and Windows Server 2003 counters previously mentioned, but also the SQL Server counters. Of course, you should monitor the following settings on the computer running SQL Server.

	Object
	Counter
	Comments

	SQLServer:Access Methods
	Full Scans/sec
	When the number of full scans is significantly greater than a baseline comparison, it may indicate index statistics are out of date.

	SQLServer:Buffer Manager
	Buffer Cache Hit Ratio
	If this value is less than 80 percent, your system may need additional memory resource for SQL Server. Ideally this value is at or near 100 percent. When this percentage is near 100 percent, your server is operating at optimal efficiency (as far as disk I/O is concerned).

	SQLServer:Databases
	Log Growths (run against your application database instance)
	Log files growing during times of heavy system usage will result in poor performance.

	SQLServer:Databases Application Database
	Percent Log Used (run against your application database instance)
	If the percentage of log space used approaches 100 percent, transaction log backups should be performed more often, or the transaction log files should be increased in size.

	SQLServer:Databases Application Database
	Transactions/sec (run against your application database instance)
	The number of transactions started for the database.

	SQLServer:Locks
	Lock Waits/sec
	While blocking locks are inevitable, a value significantly greater than a baseline comparison for an extended period of time indicates a performance penalty due to blocking locks. Blocking locks occur when read operations block writes, writes block reads, or writes block other writes.

	SQLServer:Locks
	Number of Deadlocks/sec
	While deadlocks are inevitable, a value significantly greater than a baseline comparison for an extended period of time indicates a performance bottleneck. Deadlocks occur when operations each want a resource the other has locked. If the operations both involve writes, SQL Server must choose one of the transactions and roll it back in order for the other transaction to proceed. The undo and subsequent re-do operation are the causes of less than optimal performance.

	SQLServer:Memory Manager
	Memory Grants Pending
	Defined as the current number of processes waiting for a workspace memory grant. This counter, along with Buffer Cache Hit Ratio, can confirm a memory resource bottleneck.

On the computer running SQL Server, you should also consider using alerts. This will enable you to send notifications to an administrator if a particular state is reached on that computer.
.NET Framework Tuning

To tune the .NET Framework, you need to tune CLR. Tuning the CLR affects all managed code, regardless of the implementation technology. You then tune the relevant .NET Framework technology, depending on the nature of your application. For example, tuning the relevant technology might include tuning ASP.NET applications or Web services, Enterprise Services, and ADO.NET code. You can also use performance counters to identify CLR bottlenecks. The following sections address CLR tuning and how to use counters to identify bottlenecks.

Tuning CLR

CLR tuning is mostly achieved by designing and then optimizing your code to enable the CLR to perform its tasks efficiently. Your design needs to enable efficient garbage collection, for example by correctly using the Dispose pattern and considering object lifetime.
The main CLR-related bottlenecks are caused by contention for resources, inefficient resource cleanup, misuse of the thread pool, and resource leaks. For more information about optimizing your code for efficient CLR processing, see Improving Managed Code Performance.

Use the performance counters shown in the following table to help identify CLR bottlenecks.
	Area
	Counter

	Memory
	Process\Private Bytes

.NET CLR Memory\% Time in GC

.NET CLR Memory\# Bytes in all Heaps

.NET CLR Memory\# Gen 0 Collections

.NET CLR Memory\# Gen 1 Collections

.NET CLR Memory\# Gen 2 Collections

.NET CLR Memory\# of Pinned Objects

.NET CLR Memory\Large Object Heap size

	Working Set
	Process\Working Set

	Exceptions
	.NET CLR Exceptions\# of Exceps Thrown /sec

	Contention
	.NET CLR LocksAndThreads\Contention Rate /sec

.NET CLR LocksAndThreads\Current Queue Length

	Threading
	.NET CLR LocksAndThreads\# of current physical threads

Thread\% Processor Time

Thread\Context Switches/sec

Thread\Thread State

	Code Access Security
	.NET CLR Security\Total Runtime Checks

.NET CLR Security\Stack Walk Depth

For more information about how to measure these counters, their thresholds, and their significance, see ASP.NET Chapter 15, Measuring .NET Application Performance.
Identifying Common Bottlenecks

The following list describes several common bottlenecks that occur in applications written using managed code and explains how you identify them using system counters.
· Excessive memory consumption: Excessive memory consumption can result from poor managed or unmanaged memory management. To identify this symptom, observe the following performance counters:

· Process\Private Bytes

· .NET CLR Memory\# Bytes in all Heaps

· Process\Working Set

· .NET CLR Memory\Large Object Heap size

An increase in Private Bytes while the # of Bytes in all Heaps counter remains the same indicates unmanaged memory consumption. An increase in both counters indicates managed memory consumption.

· Large working set size. The working set is the set of memory pages currently loaded in RAM. This is measured by Process\Working Set. A high value might indicate that you have loaded a number of assemblies. Unlike other counters, Process\Working Set has no specific threshold value to watch, although a high or fluctuating value can indicate a memory shortage. A high or fluctuating value accompanied by a high rate of page faults clearly indicates that your server does not have enough memory.

· Fragmented large object heap. Objects greater than 83 KB in size are allocated in the large object heap, which is measured by .NET CLR Memory\Large Object Heap size. In many cases, these objects are buffers (large strings, byte arrays, and so on) used for I/O operations (for example, creating a BinaryReader to read an uploaded image). Such large allocations can fragment the large object heap. You should consider recycling those buffers to avoid fragmentation.

· High CPU utilization. High CPU utilization is usually caused by poorly written managed code, such as code that:

· Causes excessive garbage collection. This is measured by % Time in GC.

· Throws a large number of exceptions. This is measured by .NET CLR Exceptions\# of Exceps Thrown /sec.

· Creates a large number of threads. This causes the CPU to spend large amounts of time switching between threads instead of performing real work. This is measured by Thread\Context Switches/sec.

· Thread contention: Thread contention occurs when multiple threads attempt to access a shared resource. To identify this symptom, observe the following performance counters:

· .NET CLR LocksAndThreads\Contention Rate / sec

· .NET CLR LocksAndThreads\Total # of Contentions

An increase in the contention rate or a significant increase in the total number of contentions is a strong indication that your application is encountering thread contention. To resolve the issue, identify code that accesses shared resources or uses synchronization mechanisms.

For more information, see the article, Improving .NET Application Performance and Scalability.
Microsoft TechNet also includes the following articles about improving the performance of SQL Server 2000:
Microsoft SQL Server 2000 Index Defragmentation Best Practices
Merge Replication Performance Tuning and Optimization
SQL Server 2000 – Maintain on TechNet
[image: image1][image: image2][image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9]
1

